Search results for "Hydrodynamic stability"
showing 3 items of 3 documents
Controlling stability and transport of magnetic microswimmers by an external field
2019
We investigate the hydrodynamic stability and transport of magnetic microswimmers in an external field using a kinetic theory framework. Combining linear stability analysis and nonlinear 3D continuum simulations, we show that for sufficiently large activity and magnetic field strengths, a homogeneous polar steady state is unstable for both puller and pusher swimmers. This instability is caused by the amplification of anisotropic hydrodynamic interactions due to the external alignment and leads to a partial depolarization and a reduction of the average transport speed of the swimmers in the field direction. Notably, at higher field strengths a reentrant hydrodynamic stability emerges where t…
Emergent pattern formation of active magnetic suspensions in an external field
2020
We study collective self-organization of weakly magnetic active suspensions in a uniform external field by analyzing a mesoscopic continuum model that we have recently developed. Our model is based on a Smoluchowski equation for a particle probability density function in an alignment field coupled to a mean-field description of the flow arising from the activity and the alignment torque. Performing linear stability analysis of the Smoluchowski equation and the resulting orientational moment equations combined with non-linear 3D simulations, we provide a comprehensive picture of instability patterns as a function of strengths of activity and magnetic field. For sufficiently high activity and…
Convective instability in proto-neutron stars
2000
The linear hydrodynamic stability of proto-neutron stars (PNSs) is considered taking into account dissipative processes such as neutrino transport and viscosity. We obtain the general instability criteria which differ essentially from the well-known Ledoux criterion used in previous studies. We apply the criteria to evolutive models of PNSs that, in general, can be subject to the various known regimes such as neutron fingers and convective instabilities. Our results indicate that the fingers instability arises in a more extended region of the stellar volume and lasts a longer time than expected.